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Introduction

According to the British oncologist R.A. Willis [1] a neoplasm “is an abnor-

mal mass of tissue, the growth of which exceeds and is uncoordinated with

that of the normal tissues, and persists in the same excessive manner after

cessation of the stimulus which evoked the change”; this is the commonly

recognized definition of “cancer” in the medical field. This plague is the

first cause of death in developed countries and the second cause of death

in developing ones [2]. This pathology has always scared population: the

most ancient read testimony about cancer is dated 3000 B.C. and it refers

to a breast cancer [3]; man learned to engage this pathology thanks to the

scientific and cultral progresses: efficient diagnostic method, preventative

measures and developing effective and less invasive therapies.

However the numbers of tumors, although mortality and late-stage incidence

steadily decreasing [2, 4], remain unacceptable and therefore encourage the

entire scientific community to engage significant resources in all sectors con-

cerned.

Breast cancer is the most common form of cancer in women (tab.1 sorted

by Age Standardized Rate - ASR) and it is globally the second one for the

number of cancer deaths with a mortality rate of 12 per cent of all cancer

deaths [5] (tab.2 sorted by Age Standardized Rate - ASR); these numbers

are used to justify the rapidity with which the techniques of investigation,

prevention and treatment evolve and adapt.
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Cancer number ASR

Breast 1384155 38,9

Cervix uteri 530232 15,2

Colorectum 571204 14,6

Lung 515999 13,5

Stomach 348571 9,1

Table 1: First 5 cancers (by incidence) in women [6]

Cancer number ASR

Lung 1376579 19,3

Breast 458503 12,4

Stomach 737419 10,3

Liver 695726 9,9

Colorectum 1235108 8,2

Table 2: First 5 cancers (by mortality) in both sex [6]

Generally there are many options available for the treatment of various neo-

plasms, both benign and malignant, such as: surgery, chemotherapy, radio-

therapy and palliative care. Therapy choice largely depends on the location

and the type and on stage of cancer, as well as the health of the patient

and his expectations. In any case, the medical community agrees that early

detection decisively improves the bounty of prognosis [7]. For this reason,

most of scientific research is dedicated to improving cancer screening tech-

niques and different survey instruments. Oncological screening of the breast

cancer involves extensive use of mammograms and ultrasound as primary

imaging investigative tools [8, 9].

Since many years is growing using of Dynamic Contrast-Enhanced Mag-

netic Resonance Imaging (DCE-MRI) in the prevention and early diagnosis
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of breast cancer [10].

Figure 1: Visual comparing (in order: Mammography, Ultrasound, MRI)

Comparing this diagnostic technique to the previous and still valid tools

such as mammography and ultrasound, factors in favor of this imaging tool

are:

• magnetic waves used in MRI have no undesirable effects on patients

unlike of ionizing radiation (x-rays), themselves cause on the long term,

of tumor (due to the high energy that can permanently damage ties

of DNA cells) [11];

• MRI with the help of contrast (DCE-MRI) allows to expand the age

range of the screening program standards favoring the diagnosis in

patients known as “under forty” who, before the age of 40, show a

particularly dense glandular tissue of the breast and then that mam-

mography does not discriminate decisively tissue lesions;

• the dynamic characteristic of the contrast medium allows to discrim-

inate effectively tumors that exhibit a strong factor in angiogenesis;

this feature is the most important added value in the quality of the

results obtained.
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The analysis of a DCE-MRI is a complex and meticulous job due to the huge

amount of data to be analyzed and the complexity of 3D representation of

the entire scanned volume. Moreover, the time evolution of the intensity

signal dynamic components is a decisive factor in the evaluation of the le-

sions.

The aim of this thesis it to develop an automatic, distributed, and com-

prehensive system of breast segmentation that can support the job of the

radiologist providing a useful help service. These instruments are called

CAD (Computer Aided Detection\Diagnosis); in the specific the proposed

system makes use of pattern recognition techniques and supervised learning

applied to a set of features extracted, after suitable pre-processing phase,

from the acquired data. This instrument was developed in Matlab and inter-

faced via a special plug-in for OsiriX [12], the most used tools in the field of

diagnosis and analysis of image data in DICOM format. Finally, to improve

the performance of the entire process, the architecture was been distributed

by sharing functionality between a client and a server and by centralizing

and optimizing the more complex phases.

The thesis is divided into 5 chapters: the first briefly outlines the breast

cancer and the principles of DCE-MRI, providing the basis for understand-

ing operations of the proposed automatic segmentation; the second presents

the CAD systems, analyzing the various stages, the data involved and the

different possibilities of implementation known; the third describes the ar-

chitecture of system by dividing it into two main components, the process

of image segmentation DCE-MRI and architecture for secure distribution

of content, focusing on implementations details and architectural choices

of both components; the fourth presents the system and its components in

terms of experimental results and performance; finally, the fifth chapter dis-

cusses the observations made based on the results obtained and any possible

future developments.
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1
Breast cancer

Mammary gland is an even and symmetrical organ, placed on the front wall

of the chest, consists mainly of a fibrous tissue, a glandular component (15-

20 lobes, each of which consists of lobules and each lobule has a lactiferous

- from Greek “that carries milk” - duct that drains into openings in the

nipple), and an adipose tissue (more extended than glandular and fibrous

tissues).
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Figure 1.1: A female breast and its main parts

In order to understand the techniques, methods and approaches used in the

whole work it is necessary to investigate the context in which they were

developed, describing the main types, the related characteristics of breast

cancer and the theory behind the DCE-MRI, focusing on the features that

are particularly useful in highlighting the characteristics of neoplasms in

exam.

1.1 Breast cancer

Our earliest written record regarding cancer (although the word cancer was

not used) was discovered in Egypt and dates back to about 3000 BC. It is

called the “Edwin Smith Papyrus” and is a copy of part of an ancient Egyp-

tian textbook on trauma surgery. It describes 8 cases of tumors or ulcers

of the breast that were treated by cauterization with a tool called the fire
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drill. The writing says about the disease, “There is no treatment” [3, 13].

The cure of the disease over time has seen a shift in focus considering, at

first surgical treatment as the only one therapy approachable and then, to

the present day, considering the well-known dynamics of such injuries as

important factors in planning curative or palliative therapy.

The number of cases of breast cancer worldwide has significantly increased

since the 1970s, a phenomenon partly attributed to the modern lifestyles of

Western world [14]; in fact recent studies have shown that tumors are, for

the most part, environmental disease rather than genetic, with a ratio of

9:1 in cases attributable to environmental factors than cases attributable to

genetic factors [15]. Among the environmental factors we have to consider

any etiological factor isn’t genetically inherited, such as pollution, smoking,

nutrition, radiation, stress and trauma [16].

Neoplasms of the breast represent the most important lesions of this organ,

although not the most frequent, they may assume macroscopic and histo-

logical aspects extremely variable according to the type of tissue from which

they originate. Since that the tissue of the breast is same in the female

and in the male, the breast cancer can also affect the men (even if it repre-

sents less of 1% of all male cancers) [17, 18]. In both sexes, the incidence is

higher in the left breast and upper-outer quadrant breast as shown in fig.1.2

[19, 20].

Figure 1.2: Spatial incidence of breast cancer
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It is possible to rank breast tumors through a classification system intro-

duced specifically to standardize and simplify the communication process

of medical oncologists, the discriminating characteristics are: the involved

tumor tissue, the histological characteristics highlighted and staging.

TNM (Tumor, Nodes, Metastases) Standardization is very used [21], it was

developed in 1987 jointly according to the criteria of the UICC (Interna-

tional Union Against Cancer) and AJCC (American Joint Committee on

Cancer); specifically TNM table make use of that codes:

• T distinguishes the primary tumor whose size and nature is expressed

by the value that comes with it (X - 0 - IS - 1MIC, 1a, 1b, 1c, 1d - 2

- 3 - 4a, 4b, 4c, 4d). TX or T0 indicates a tumor cannot be definable

or detectable; T1c tumors with size up to 2 cm to gradually evolve

into T4b for tumor of any size but already adherents to the skin that

has led to a hollowing or orange peel skin until T4d that indicates an

inflammatory carcinoma;

• N indicates, if and to what extent, the lymph nodes are affected by

breast cancer. The values that accompany N are different (X - 0 - 1a -

1b1, 1b2, 1b3, 1b4 - 2 - 3) and indicates by N0, absence of metastasis to

N3 when there is metastatic involvement of the lymph nodes belonging

to the ipsilateral internal mammary chain (N3);

• M refers to the presence of any metastases. MX indicates inability

to ascertain the presence of distant metastases, excludes the M0, M1

locates in the distant organs.

In the case of breast cancer, table 1.1 shows the main TNM codes associat-

ing them with the staging code, it also standard, which indicates the extent

of the disease allowing to compare patients and the results of different treat-

ment protocols and to formulate a more accurate therapeutic and prognostic

opinion.
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Table 1.1: TNM table with stage and survival index at 5 years

1.2 Biomedical Imaging

With the terms “imaging” or “biomedical imaging” or “diagnostic by imag-

ing” refers to the generic process through which it is possible to observe

an area of a body not visible from the outside. The non-invasive diagnosis

plays an important supporting role in prevention programs and, specifi-

cally, is the screening tools that are currently the most effective in the fight

against cancer. Howevert the effectiveness of each imaging technique need

to be evaluated in a risk/benefit balance.

1.2.1 Techniques for breast imaging

Imaging techniques applied in the research of breast diseases are:

Mammography (RX) uses ionizing radiation (X-rays) at low energy
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(30 kVp) to impress images of the breast on planar X-ray films. This

instrument is the “gold standard” for breast imaging because it is a

simple test, fast running, highly specific and widely available on the

territory; constituting, at present, the key exam for screening programs

with the ability of recognition of the lesions when the tumor is not yet

visible by palpation (preclinical stage). By contrast, as mentioned

above, the ionizing radiations are, in the long term, themselves the

cause of tumors [11] and the image quality is lower when compared

to other diagnostic methods. Sensitivity: 85-90% for adipose breasts,

70% for dense (low fat content) breasts; specificity: 90-95%.

Ultrasound (ECT): based on the principles of the emission of echo

and the transmission of the ultrasonic waves (between 2 and 20 Mhz

choice taking into account that higher frequencies have a greater re-

solving power of the image, but penetrate less deeply into the subject);

it is often used to complement other investigations such as mammog-

raphy and clinical examination or for further diagnosis of lesions which

persist dubious. In addition, the ECT replaces mammography in the

study of hyper-dense breasts (rich of glandular tissue) as in women

under 40 years (so called “under-forty”). In contrast ultrasound has

a low resolving power for the breasts with a normal distribution of

tissues and it is an operator-dependent procedure, since special skills

are required (as manual dexterity and spirit of observation); at last it

needs a coupling gel between the probe and the breast to eliminate the

refraction effect of air. Sensitivity: 77%; specificity: 89% [22]. ETC,

in association with mammography, improves the diagnostic accuracy

by increasing the sensitivity (up to 90%) and specificity (up to 98%).

Magnetic Resonance (MRI): based on the physical principles of

nuclear magnetic resonance, through the use of electromagnetic fields
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and radio frequencies, allows to generate tomographic images (multi-

layer) of tissues reconstructing a digital volume at three dimensions of

the organ under examination. It is highly suitable for the investiga-

tion of lesions with strong neo-angiogenesis (the ability of a tissue to

release VEGF growth factors that stimulate the proliferation of new

blood vessels) and thanks to this prerogative MRI is widely used in

the diagnosis of breast cancer even if it has contraindications related

to long (about 40 minutes) capture process causing discomfort at pa-

tients for claustrophobic, or also other problems such as allergic to

contrast media, pacemaker, ferromagnetic implants and extreme obe-

sity. Sensitivity: 98%; specificity: 81% [22].

Computed Tomography (CT/TAC): as for the Mammography,

uses ionizing radiations (X-rays) allowing to reproduce sections or lay-

ers (tomography) of the patient body and to perform three-dimensional

elaborations [23]. It has few benefit in the diagnosis of breast cancer

because, although it is in tomographic projection, it does not provide

additional meaningful information to the common mammography (RX

planar) increasing only the dose of ionizing radiations and the com-

plexity of the acquisition procedure.

Nuclear Medicine (PET): in these investigation tools are collected

all the diagnostic instruments for image that use a radiopharmaceutical

formed by a radio-isotope tracer with short half-life, chemically bound

to a biologically active molecule, called “vector”, that indicates tissue

metabolic activity. After a waiting period, during which the metaboli-

cally active molecule (usually a sugar) reaches a specified concentration

inside the organic tissue to be analyzed, the isotope (with short aver-

age life) decays, emitting a positron. After a path that can reach at

most a few millimeters, the positron annihilates with an electron, pro-
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ducing a pair of gamma photons both of 511 KeV of energy emitted in

opposite directions (back to back photons) [24]. PET provides phys-

iological information, unlike all other diagnostic tools that provides

morphological information of the anatomical region under examina-

tion. The survey instruments offered by nuclear medicine are often

recommended for the purpose of diagnosing and staging metastases

or discover the involved lymph nodes. The power of radio-tracer, in

fact, differentiating the metabolic activity of the cells, allows to reach

a sensitivity of almost 100% and a specificity of 98% in the evaluation

and lymph node or in the search for metastases [25].

We can summarize the key features of (digital) imaging techniques, till now

examined in the next table:

Table 1.2: Numerical comparison of survey instruments by images

1.2.2 MRI e DCE-MRI

The principle of nuclear magnetic resonance is based on measurement of

the precession of the spin of protons (or other nucleus with a magnetic

moment as shown in fig.1.3) when they are subjected to a magnetic field.

In conventional MRI the energy acceptor system is represented by hydrogen

nucleus (H), the simplest and the most copious element in the human body,

characterized by a not zero spin quantum number (spin 1/2).

The Instrument for MRI consists of a big main magnet capable of generating
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a static homogeneous magnetic field (B) whose intensity varies, depending

on the application cases and of quality requirements, from 0.1T in 10T

reaching almost 20T in the experimental applications.

Figure 1.3: magnetic moment and precession of a proton with spin

The magnetic fields is generated through use:

• Permanent magnets: have a limited intensity; they cannot be turned

off, raising questions about safety and maintenance;

• Resistive electromagnets: made of copper solenoids with a low

constructive cost but high cost of use;

• Superconducting electromagnets: are the most common and con-

sist of a solenoid made of superconductive material which, cooled with

helium at a temperature of 4K, cancels their electrical resistance, al-

lowing a cost of using more applicable.

9
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Figure 1.4: Raymond Damadian’s: first “Apparatus and method for detecting can-
cer in tissue.” [26]

Surrounded by the static magnetic field (B) generated by the main magnet,

the spins of the protons inside the tissues tend to be aligned the lines of

force (in parallel or anti-parallel way); because the spins that are aligned in

parallel direction are in greater number, the tissue will possess a light total

magnetization (M). This alignment is never total, but rather the spins of

the various protons begin to show a precession (fig.1.3) around the direction

of the magnetic field.

This precession shows a typical frequency called the Larmor frequency which

is in the order of MHz, and then in the field of radio frequency (for a mag-

netic field of 1T and for the hydrogen atoms, the Larmor frequency is 42.6

MHz); then, if on the patient is applied a rotating magnetic field in this

exact Larmor frequency and of sufficient energy, it is possible to rotate the

magnetization of the protons of an arbitrary angle (said flip-angle) [27]. The

transfer of energy required to rotate the magnetization occurs for the prin-

ciple of resonance, physical principle that naming the imaging technique.

After the impulse, the spins of the protons will gradually tend to return to
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their initial alignment along the field (relaxation phenomenon); the trend

of the magnetization is measured through a receiver coil in the plane per-

pendicular to the main magnetic field (this signal is called Free Induction

Decay, or FID). That relaxation occurs with two separate time constants

[28]:

T1 indicates the rate at which (how quickly) is reconstructed the mag-

netization vector along the direction of the main field, and it depends

on the interaction between protons and the surrounding molecules

(spin-lattice relaxation);

T2 indicates the rate at which (how quickly) is destroyed the compo-

nent of transverse magnetization in ideal conditions, and it depends

on the mutual interaction of protons neighbors (spin-spin relaxation).

The generation of images occurs through the repeated acquisition of signals

coming from the body and the appropriate modulation using the gradient

coils. Each voxel (Volumetric pixels, equivalent to a pixel in space in three

dimensions) of the image has a frequency and/or a different phase respect

to all the others, in this way it is possible to separate the signals coming

from a single portion of tissue [28]. The final image is achieved through

instruments and elaborations such as filters in frequency (to highlight one

Larmor frequency and therefore a single slice) and Fourier Transformations

(to decompose the signal in module and phase just coded to represent the

remaining two sizes).
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Figure 1.5: MRI Scanner Gradient Magnets

Peculiarity of magnetic resonance imaging, compared to other imaging tech-

niques, is the ability to produce images that reflect different physical prop-

erties depending on the type of acquisition sequence used. The classic se-

quences are:

Proton Density (PD): estimates the number of H protons in reso-

nance per unit of the tissue (voxel) directly calculated by the amplitude

of the FID signal;

T1 weighed: higher brightness of the voxel indicates a short T1, typ-

ical of the tissue with a small molecular structure useful to highlights

breast parenchyma or adipose tissue;

T2 weighed: higher brightness of the voxel indicates a long T2 and

then highlights tissues containing water such as, for example, cyst.

Angiogenesis and Dynamic Contrast Enhanced

One of the cellular mutations generated by tumors is the ability to generate

new blood vessels with the aim to bring oxygen and nutrient factors to

the tumor cells themselves (fig.1.6); this mutation called neo-angiogenesis is
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common to all types of cancer and it is supported by growth factors produced

by the tumor cells themselves (VEGF growth factor).

Figure 1.6: Process of tumor neo-angiogenesis

Magnetic resonance imaging involves the use of para-magnetic or super-

para-magnetic contrast media which affects in an indirect manner on the

information of the image, i.e. by altering the magnetic properties of the

sensitive nucleus present in the tissue under examination (altering the re-

laxation times T1 and T2). The contrast agents are injected intravenously

and the most used are:

• Gadolinium (Gd-DTPA), which has the largest number of unpaired

electrons (equal to 7) and so the greater degree of para-magnetism;

• Iron Oxide particels (super-para-magnetic) whose effect is performed

mainly on the T2 relaxation time.

The contrast medium, circulating in the venous system, spreads with differ-

ent speed in function of the vasculature of the tissue and, just because of

the tumor properties of neo-angiogenesis, allows to highlight the damaged

tissue respect to the surrounding healthy tissue.

Experimental studies have shown that the intensity of signal in time SI(t)

in the case of T1 weighing well approximates the level of concentration of
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contrast medium in time [29]. Studying the evolution of the time of the FID

signal can be obtained a fourth dimension that, fixed a voxels (and then

the 3 remaining dimensions), describes the trend, over time, of the effects

of the contrast medium at that exact point in the tissue under examination

(fig. 1.7). This curve is called TIC (Time Intensity Curve) or Enhancement

Curve.

Figure 1.7: TIC of a voxel calculated from FID

A visual diagnosis can be obtained by analyzing the trend of the enhance-

ment curve and comparing it to sample curves (fig.1.8) typical of particular

tumor formation or that they approximate the dynamics of the blood flow

typical of neoplastic lesions [30]:
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Figure 1.8: TIC sample curves

The sample curves ,shown in the graph, are considered guidelines for the

visual interpretation of TIC and they can be divided [30]:

Type I: corresponds to a straight (Ia) or curved (Ib) line; enhance-

ment (hence the contrast absorption) continues over the entire dy-

namic study [typical of healthy tissue or benign neoplasms];

Type II: a plateau curve with a sharp bend after the initial upstroke

[typical of probably malignant lesions];

Type III: a washout time course [typical of malignant lesions].

15



2
Computer Aided Detection and Diagnosis

The common screening programs, that we said to be based on use of mam-

mography as a primary method of investigation, strongly suggest the use of

“double reading” [8] (repeated assessment several times by the same radiolo-

gist or by different radiologists) with possible discussion among radiologists

or, in the case of divergent opinions, the opinion of a third radiologist. This

recommendation helps us to understand the complexity and sensitivity of

analysis of breast mammography. The radiologists often use of tools that

assist in the detection of cancerous lesions till also to the evaluation of a

complete diagnosis [31, 32]: these instruments are known as CAD (Com-

puter Aided Detection\Diagnosis) and, supported by an appropriate and

proved medical validity, are widely used in the analysis of complex medi-

cal investigations both for the extension of data to be taken into account

(MRI\TAC\PET) and for an intrinsic uncertainty of the data due to the

scanning process (ECO).

CAD systems analyze data through strict mathematical patterns, according

to well-defined and deterministic algorithms. This feature allows to remove

the difficulties due to intra-observability and inter-observability, represented

by different valuations of the same region, under the same assumptions, by

same doctor on different moments, and different evaluations of the same

region by different doctors. Math feature behind the deductions (both in
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detection phase and in diagnosis phase) let to evaluate sensitivity and speci-

ficity of such instruments in a precise and strict way showing objective im-

provement in these parameters [33, 34].

2.1 Need for CAD system: human error

The overall assessment of breast cancer using imaging tools is the result of a

process that at first passes through a visual analysis and then through sub-

jective opinion; so the human error can occur, both in the visual analysis

and in the last stage of subjective opinion. Nowadays there are no auto-

matic tools able to totally replace the radiologist in the diagnosis, but CAD

systems help and support the doctor to reaching an opinion reducing the

mistakes made during the assessment flow.

In 1987 Nodine and Kundel [35], studying the movement of the eyes of five

radiologists during the study of chest x-ray searching for lung cancer (very

similar in morphology to breast cancer), showed that the reading process

is organized and selective, mainly focused on the regions of the image that

the physician considers the most information-rich: eye movement was nei-

ther comprehensive nor systematic and, at the end of the inspection of the

image, some areas have never crossed from the look of the doctor. At the

end of the study, the authors proposed a system of classification of errors

divided into three categories:

Sampling Errors: occur when the lesion does not fall within the field

of view of the radiologist;

Recognition Errors: occur when the lesion is crossed by the look of

the doctor, but is not recognized as such;

Decision-Making Errors: occur when a suspicious area is localized,

but misclassified.
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If we consider more complex diagnostic instruments such as DCE-MRI, ob-

ject of this thesis, we should add that the search area is not a single two-

dimensional image but a three-dimensional volume containing, usually, 256

pixels * 128 pixels * 80 pixels for a total of about 3 million of voxels; we

should also add that the information contained in the dynamic evolution of

the contrast medium is an important decision parameter in the evaluation

of neoplastic lesions.

2.2 Steps of a CAD system

A CAD system, essentially, is composed of a set of waterfall performed

independent stages; implemented steps are congruent to the purposes of the

system that can range from the simple support to the doctor by providing

useful instruments and information in a simple way to automatisms for the

detection of suspicious lesions or the final classification of the same lesions

into benign or malignant.

Literature [36] proposes the following (fig. 2.1) steps division:
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Figure 2.1: CAD mass classication [36]

Of course any additional step does not affect the achieved level of automa-

tion but it can only improve the quality or the numerousness of results.

There is no need that all the stages are implemented in order to classify a

system as a CAD; in fact there are very simple tools that implement only

the early stages of classification flow, but that provide important and often

crucial support in the final diagnosis. These support instruments, in the case

of the study of a DCE-MRI breast, can implement: representations into dif-

ferent projection, three-dimensional reproductions of the scanned volume,

temporal representation of the evolution of the dynamic signal (TIC) of a

single Voxel or of a set of Voxel (average TIC), subtractive images, segmen-

tation by thresholding, contrast adjustment and interpolation.

2.2.1 Digitizing

Instruments of modern diagnostic investigation are mainly electronic devices

that produce a raw data that can be directly subject of the CAD elabora-
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tion. One of the few diagnostic method still on analog support is mammog-

raphy. It is gradually shifting toward digitization with indications of modern

screening programs [37]. The digital imaging systems require the use of the

DICOM format (Digital Imaging and Communications in Medicine): this

is a standard for handling, storing, printing, and transmitting information

in medical imaging [38]. DICOM differs from some, but not all, data for-

mats because it groups information into data sets. That means that a file

of a chest x-ray image, for example, contains the patient ID within the file,

so that the image can never be separated from this information by mistake.

Generally a DICOM data object consists of a number of attributes, including

items such as name, sex, ID, etc., and also one special attribute containing

the image pixel data [39, 40].

PatientID MagneticFieldStrength

PatientName ContrastBolusAgent

PatientSex EchoTime

PatientBirthDate RepetitionTime

PatientAge SliceThickness

PatientWeight PixelSpacing

PatientReligiousPreference BitDepth

AcquisitionDateTime BitsAllocated

ProtocolName BitsStored

Modality HighBit

Manufacturer Columns

SeriesDescription Rows

Table 2.1: Some of the most important fields of DICOM standard

We see, in tab. 2.1 that a large part of the data are related to the patient

and so there is the need to treat it as confidential and sensitive data. The
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rest of the data are related to the technical characteristics of the acquisition

process and it is important that a CAD system should consider them.

2.2.2 Image Preprocessing

This phase includes a set of preliminary elaborations of the image at low

level with the purpose of improving the quality by reducing noise introduced

into the acquisition step or correcting any artifacts due to patient motion;

this last requirement is critical if the CAD system is developed for diagnos-

tic tools with a long acquisition time such as the DCE-MRI. The average

duration of an acquisition with the use of contrast media is 40–50 minutes

and, even though the patient is immobilized in special breast-coils [41, 42],

that gather the breast in a more or less rigid way, different artifacts may

occur caused by breathing, by the different consistency of the breast tissue

or even by the movements of the patient. So it is necessary to expand this

stage by introducing a step of registration of the sequence of volumetric im-

ages in order to reduce the effect of these motion artifacts [43].

Image registration is a process which permits the transformation of the ref-

erence systems of two different images in order to compare them; for medical

images the registration process permits to transform or align two images col-

lected in two different time instants or produced by different instruments.

There is a large variety of algorithms for achieving image registration [44, 45]

and they can be classified in according to:

Rigid\Non-Rigid: a rigid transformation (or affine) provides a set of

transformations that include rotation, scaling, translation, and other

affine transforms. Affine transformations are not able to model all

possible natural deformations, especially in cases such as movement

artifacts of a soft tissue which is the breast: in these cases it is neces-

sary an elastic (non-rigid) transformation. Recording techniques use

some search algorithms with linear or cubic interpolation on models
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of affine transformation or free-form-deformation (FFD) [46]. This

transformations can be applied to two-dimensional surfaces or three-

dimensional volumes [47, 48].

Intensity-Based\Feature-Based: methods based on intensity rely

on similarity measures that take into account the brightness values

of each pixel\voxel. Instead, the feature-based techniques, make use

of target that use some fixed points, manually set or automatically

searched, to make a recording basing the optimization on the Euclidean

distance of these targets.

Mono-modal\Multi-modal: the “modal” refers to the kind of scan-

ner\sensor with which the images are acquired and, in case of a multi-

modal, the registration aligns and compares images obtained from dif-

ferent scanners. The multi-modal registration is widely used in the

medical field of complementary surveys such as CT\MRI brain and

PET\CT total body [45].

Spatial-domain\Frequency-domain: The spatial methods operate

in the domain of the image, by comparing the characteristics and\or

the intensity pattern. Instead, in the frequency domain, it is possible

to apply the method of “phase correlation”, which consists of rephras-

ing an image in relation to another. This phase-shift in the field of

frequencies corresponds to an alignment that, unlike many algorithms

in the spatial domain, is able to reduce the noise, the occlusion, and

other defects typical of medical images.

2.2.3 Image Segmentation

Segmentation is the process of subdivision of an image in distinct Regions Of

Interest (ROI — connected sets of voxels) that are homogeneous compared

to a given characteristic [49] and this stage is the most critical because the
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precision and quality of the segmentation results impact in a direct way on

the performance of the next steps; the image segmentation can be achieved

at different granularity levels:

• Air\Breast segmentation

• Parenchyma\Adipose\Glandular tissue segmentation

• Suspicious masses segmentation (fig. 2.2)

Figure 2.2: A MRI segmented in suspicious ROI in a CAD system view

The proposed segmentation techniques vary from the simplest thresholding

segmentation based on signal intensity [30, 50] up to more advanced systems

of segmentation by classification based on pattern recognition techniques and

supervised learning, applied to a set of features [51, 52, 53].

2.2.4 Feature Extraction and Selection

With the techniques of feature extraction, the objects (regions identified in

the previous phase and/or individual voxels) are represented by a vector of
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parameters (feature) that provides a numerical projection of the features

that are considered appropriate to describe the problem of classification

[54, 55]. We can group the features according to the characteristics that

they represent obtaining the five major classes of features for classification

problems of neoplastic lesions by magnetic resonance imaging:

Class Characterization

Dynamics Feature Description of the temporal dynamics of the

signal intensity through direct measures on

TIC

Pharmacokinetic Feature Description of some physiological parameters

(Absorption, Distribution, Metabolism, and

Excretion — ADME) of tissues, calculated on

the basis of mathematical models

Morphological Feature Description of the shape and structure of the

regions obtained in the segmentation phase

Textural Feature Description of the geometrical structure

(texture) image through parameters that describe

their statistical properties

Spatiotemporal Feature Modeling of the signal in a four-dimensional

space, representative of the temporal dynamics,

the characteristics of the architectural and

spatial variations of the voxels

Table 2.2: Classification of feature types

Depending on the classifiers used and on the purpose of the CAD system,

the feature can be combined with each other to provide the information

required to the classification. Then, among all the feature candidate, it is

necessary to extract a small subset obtained through a phase of feature selec-
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tion [56] in order to reduce the correlation between the feature and remove

those proposed that do not provide decisive information in the classification

step. Another object of feature selection is to improve the performance of

the classifiers strongly influenced by the amount of data on input (Huges

Phenomenon [57], over-fitting and computational complexity).

2.2.5 Classification

In this step, the CAD system collects the information provided by the pre-

vious steps expressing for each element (voxel or ROI and related features)

a statistical classification (associating to each object a percentage that rep-

resents the statistical affinity of that object in any given class) and then

expressing the final decision. CAD systems use different types of classifiers

most of which, before being inserted in the operating flow of the CAD, re-

quire a training step that adapts the system to the specific problem trying

to maximizing the ability of prediction and, especially, the capacity of gen-

eralization [58].

There are many different types of classifiers, each with its own peculiarities,

that make it more or less suitable in specific matters. The theory of classi-

fication states that there is not the best classifier, that behaves better than

the others (except for problems of very small or simple models and known

perfectly). However, we can analyze the most used and eventually compare

the statistical indexes obtained:

Multilayer perceptron (MLP) is a feedforward artificial neural

network model that maps sets of input data onto a set of appropriate

outputs. An MLP consists of multiple layers of nodes in a directed

graph, with each layer fully connected to the next one. Except for

the input nodes, each node is a neuron (or processing element) with

a nonlinear activation function. [59]. MLP uses a supervised learning

technique called backpropagation for training the network [60, 61]
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Decision Tree (DT) is a flow-chart like structure in which internal

node represents a test on an attribute\feature, each branch represents

outcome of test and each leaf node represents class label (decision

taken after computing all attributes). A path from root to leaf repre-

sents classification rule. This flow-chart is used as a predictive model

in statistics, data mining and machine learning [62]. Training a De-

cision Tree is through greedy algorithms with a process of “top-down

induction of decision trees” (TDIDT) [63].

Random Forest (RF) is an ensemble learning method for classifi-

cation that operates by constructing a multitude of decision trees at

training time and outputting the class that is the mode of the classes

output by individual trees [64].

Naive Bayes (NB) is a classifier based on the application of Bayes’

theorem. It requires knowledge of a priori probabilities and the con-

ditional probabilities related to the problem that, in case of medical

diagnoses, are not available because of the variability of data (physi-

ological heterogeneity of patients, morphological heterogeneity of pa-

tients and variety of pathologies).

Support vector machines (SVM) this classifier constructs a hyper-

plane (or set of hyper-planes) in a high-dimensional space, which can

be used for classification tasks. Intuitively, a good separation (binary

thresholding) is achieved by the hyper-plane that has the largest dis-

tance to the nearest training data point of any class.

Adaptive Boosting (AdaBoost) is an ensemble learning meta-

algorithm and it can be used in conjunction with many other learning

algorithms to improve their performances [65]. AdaBoost is adaptive:

it means that subsequent classifiers built are tweaked in favour of those
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instances misclassified by previous classifiers. AdaBoost is sensitive to

noisy data and outliers [58].

2.2.6 Evaluation

In this step the results of the classification step are taken into consider-

ation with the aim of evaluating the final performance of whole diagno-

sis\detection system. For this purpose, in the design phase of the CAD

it is taken into account the so-called “gold-standard” or “ground-truth”

that, regardless of the aim of the system, represents the objective function

of an optimization and reducing errors process. For segmentation and\or

classification of tumor lesions, the gold standard is achieved by taking into

account the medical report of some expert radiologists in the form of seg-

mented ROIs, all histologically proved.

In the problem of binary classification, which could be a CAD system of

separation of benign from malignant or even a CAD system highlights the

suspicious tissue from non-suspicious, the performances can be evaluated

through four key numerical parameters. Supposing to have two classes, re-

spectively called “Positive” and “Negative”, we define:

True Positive (TP) the number of elements belonging to the Positive

class, classified by the system as belonging to the Positive class;

True Negative (TN) the number of elements belonging to the Neg-

ative class, classified by the system as belonging to the Negative class;

False Positive (FP) the number of elements belonging to the Nega-

tive class, classified by the system as belonging to the Positive class;

False Negative (FN) the number of elements belonging to the Pos-

itive class, classified by the system as belonging to the Negative class.
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In the detection of neoplastic lesions, the most severe case is represented by

the false negatives. This misclassification causes a delay in the diagnosis and

so in the treatment of the disease and it can irremediably compromise the

patient’s health. Instead, the false positives are tolerated (if not excessive

in numbers) because they make to start the diagnostic investigation in the

same way as true positives do; further clinical examinations will ensure (or

exclude) the pathology identified from CAD. A summary evaluation of the

performance of the entire system can be expressed through statistical indexes

(tab. 2.3) calculated from the validation parameters [66] set out above:

Table 2.3: Statistical indexes for evaluating the performance of classification sys-
tems [66]

Instead, if we want to estimate how much the chosen predictive model gen-

eralizes the problem in an independent way from the data, it is necessary

to apply the statistical technique of cross-validation. Each round of cross-

validation involves partitioning a sample of data into complementary sub-

sets, performing the analysis on one subset (called the training set), and val-

idating the analysis on the other subset (called the validation set or testing
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set). To reduce variability, multiple rounds of cross-validation are performed

using different partitions, and the validation results are averaged over all the

rounds. There are different types of cross-validation: in the K-fold cross-

validation, the original dataset is partitioned into K equal size sub-samples;

the Leave-one-out cross-validation uses a single observation from the original

dataset as the validation data, and the remaining observations as the train-

ing data; in medical field it is useful to use an approach leave-one-patient-out

in which each step of the cross-validation uses an entire patient dataset as

a validation set and the remaining data as the training data [67, 68].

2.3 Diagnostic tools and CAD architectures

To obtain the diagnosis of a patient using a DCE-MRI, the radiologist must

analyze the three-dimensional volume slice by slice, detecting the regions

that absorb more contrast media and then to deep the dynamics of these

absorptions evaluating the curves voxel by voxel or with average values and

finally, comparing them with the sample curves. To achieve this goal, even

manually, there are DICOM files manipulation and processing softwares that

help the doctors to write down a diagnose. CAD systems automate these

tools implementing, in a more or less complete way, the steps so far described

and they provide a final diagnosis which only needs to be investigated and

contextualized by the radiologist.

2.3.1 OsiriX

OsiriX [12] is an image processing application for Mac dedicated to all DI-

COM images produced by a wide range of medical equipment such as MRI,

CT, PET end others. OsiriX has been specifically designed for navigation

and visualization of multimodality and multidimensional images providing

2D views, 3D views, and correlating the temporal dimension of dynamic

29



Automatic Lesion Detection in Breast DCE-MRI

investigations by providing a 4D visualization. The latest versions allow a

comparison on a fifth dimension of surveys from different instruments ob-

taining, in addition to temporal correlation, even mutual information in a

single 5D view.

Figure 2.3: OsiriX application window screenshot

The capabilities are required to OsiriX as a support tool in the specific

case of the diagnosis of breast cancer, although OsiriX does not directly

implement decision-making phases such as classification or segmentation,

are as follows:

Switch of projections: allows to rotate the volume respect to the

different projections (frontal\coronal, sagittal\median,

longitudinal\transverse);

Multiplanar reconstruction (MPR): allows to calculate and dis-

play of arbitrary planes to assess the tissues or lesions in their respec-

tive local symmetries;

Maximum intensity projection (MIP): provides a three dimen-

sional representation fast and light from the computational point of
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view by projecting the maximum value of the signal intensity on an

imaginary plane;

Representation of the temporal dynamics (TIC, average TIC):

considering a single voxel the software represents the curve of variation

of the signal intensity over time (TIC); considering a ROI allows to

show the average trend of enhancement curves;

Segmentation by thresholding: defining a variable threshold to

segment the software allows in simply and directly an image in grayscale

by providing a binary image;

Contrast adjustment: the software allows to stretch, shift and

equalize the histogram of the image in an arbitrary way to highlight

the areas with different contrast variation;

Subtractive image: is one of the most important and crucial, among

functionality provided by OsiriX, because it allows to highlight at a

glance the effect of the contrast medium by subtracting voxel by voxel

the values of two different time series and obtaining a third volume

in which the differences are shown as an image. The protocol consid-

ered in this work is the result of an acquisition made in ten temporal

instants: one performed before the injection of the contrast medium

(pre-contrast series) and the remaining nine acquired at a time interval

of 56 seconds each other (post-contrast series). Generally the maxi-

mum absorption peak of the para-magnetic medium is obtained into

the 4th instant post-contrast. Labeling the temporal instants with Ti

with i = 0 for the pre-contrast serie and t = [1, 9] for the post contrast

series, the practice provides that a very useful subtractive image is

obtained by subtracting the 4th instant post contrast (fig. 2.5) with

the pre-contrast serie (fig. 2.4).
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T1 = T4 − T0

Figure 2.4: A precontrast DCE-MRI slice

Figure 2.5: A postcontrast DCE-MRI slice

Figure 2.6: A subtractive DCE-MRI image

Another important feature of OsiriX is the existence of an Software De-

velopment Kit (SDK) available to developers and the scientific community

allowing to design and implement plug-in and then extend the basic func-

tionality of the software with procedures of utility or research applications

in the medical and computing fields.

The plugins, that can be developed in OsiriX, are different types depending

on the context in which they are used:
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imageFilter: allows to apply filters to the data or to the current view;

roiTool: allows the development of tools to generate or manipulate

the Region Of Interest;

fusionFilter: allows to operate among different representations of the

same study considered or to combine different information of different

diagnostic instruments;

database: allows to create plugins useful to manipulate the diag-

nostic studies in their entirety by providing storage and cataloguing

capabilities;

other: allows to implement functionality not covered by the above

types.

2.3.2 Local Architecture

A CAD system, that develops the whole diagnostic process, can be provided

as an independent service and directly accessible from the radiologist work-

station. The software will implement a diagnostic algorithm that includes

some of the steps described above: starting from the DICOM file, it will

produce a result that the doctor can use to support a comprehensive and

well-structured diagnosis; the final response will still result of medical as-

sumptions and based on professionalism, competence and experience of an

experienced radiologist.

2.3.3 Remote Architecture

The medical and scientific progress is increasingly based on complex and con-

stantly evolving algorithms which often require a significant computational

load not always available on the conventional workstations; in addition to

the problem of computational load, there is the necessity of updating the
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workstations of each radiologist to comply to the new diagnostic algorithms

validated by the scientific community in a regular way; the best solution, to

reduce the problems described above, is to distribute the architecture of the

diagnostic process.

Scheinine et al. [69] propose an Object-Oriented Client-Server system for

interactive segmentation of medical images based on JAVA for the client

and CORBA for the distributed system, connected by a TCP/IP socket

protocol. Mayer et al. [70] implemented a “processing on demand” client-

server architecture for 3D image processing in which the computation load

is all on the server side, while the client requests the desired images one

slice (2D) at a time. At last, Sherif et al. [71] present an evolution of the

open standard DICOM to support communication between DICOM entities

over a TCP/IP network. The above cited papers were mostly designed for

computing systems belonging to several generations ago, unable to handle

even simple tasks like 3D visualization. Moreover, their focus are on the

architecture, omitting an evaluation about the severe and complex security

and privacy issues associated with the cloud computing [72].

Information Security

Information security is the protection of information and minimises the risk

of exposing information to unauthorised parties [73]; moreover its the protec-

tion of information and information systems from unauthorized access, use,

disclosure, disruption, modification, or destruction in order to provide con-

fidentiality, integrity, and availability [74]. When we face the problem of the

transmission of medical data over the network, we encounter the processing

of sensitive data related to personal information and health conditions of the

patients, moreover it is required that the system presents characteristics of

the service availability and reliability [75, 76]. To achieve the aim of securing

the use of the service, we use encryption techniques, secure protocols and
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techniques for dependability assessment to increase the confidence about the

robustness of the designed solution before putting it into operation and to

detect and remove possible critical leaks [77]

Networks

Distributed systems heavily rely on the state and quality of network inter-

connections. In professional systems, such as hospitals and scientific cen-

ters of research, often are available an infrastructure of interconnect of an

high quality. In Italy, for example, the GARR Consortium (Gruppo per

l’Armonizzazione delle Reti della Ricerca) interconnects 90 Italian univer-

sities, 145 research laboratories and 54 hospitals active in research and it

provides a connection bandwidth ranging from 1Gbps up to 20 Gbps. In

professional environments which do not adhere to this type of infrastructure

it often uses of MPLS connections that reach the order of 10-100Mbps up-

link.

Considering the state of the art infrastructure to connect, we must ensure

that the overhead added to the transmission system does not weigh signif-

icantly (in relation to the processing time and the speed-up achieved on

a server running adequate computational capabilities). To ensure certain

safety criteria, encrypted connections are widely used with the TLS\SSL

standard protocol (more specifically discussed in next chapters) and even-

tually a data compression that can reduce the size of the payload and thus

the transmission time.

The tables 2.4, 2.5 and 2.6 below compare the transmission times and

throughput on three networks with different bandwidths by varying the

parameters of the transmission protocol with the presence or absence of en-

cryption of the session using SSL, and with a data compression (performed

with a standard compression level and detailed discussed in next chapters).
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SSL Zip Byte Sec Mbps

No No 111275606 5,101 21,814

No Yes 32028169 1,234 25,955

Yes No 111275606 6,345 17,538

Yes Yes 32028169 1,847 17,341

Table 2.4: Transmission rate on LAN 10/100 Mbps

SSL Zip Byte Sec Mbps

No No 111275606 11,615 9,580

No Yes 32028169 3,462 9,251

Yes No 111275606 12,927 8,608

Yes Yes 32028169 3,756 8,527

Table 2.5: Transmission rate on British Telecom MPLS 10 Mbps

SSL Zip Byte Sec Mbps

No No 111275606 72,521 1,534

No Yes 32028169 21,792 1,470

Yes No 111275606 102,159 1,089

Yes Yes 32028169 31,742 1,009

Table 2.6: Transmission rate on SHDSL 4 Mbps
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3
Proposed architecture

In this chapter it is shown the proposed architecture for final implemen-

tation of the CAD system. The main requirement, taken into account at

design time, was that to preserve the hardware and software tools currently

in use at medical facilities to help the integration and fruition of the offered

service. The large part of radiologists uses OsiriX as a tool for handling,

processing and evaluation of magnetic resonance imaging (and various other

medical investigations that are not subject to this work). So it is required,

by using the potential offered by OsiriX SDK extension, to keep this tool as

a user’s primary interaction. The architecture requires the use of a plugin

specifically developed to make available the functionality provided by the

software. For distribution of services, a client-server module, implemented

in Java, developed using the file system provided by the operating system

and it communicates with the Plug-in collecting medical data to be analyzed

and returning the final response of the system.A whole segmentation flow

implemented, tested and validated on server side (named BLADeS - Breast

Lesions Automatic Detection System); using the numerical computing en-

vironment MATLAB 2012a and based on the criteria analyzed in Chapter

2, it provides a detection of breast lesions by recognizing suspicious ROI in

the volume of DCE-MRI.

Next image shows a system overview grouped into its main components.
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Figure 3.1: Proposed system overview

In order to simplify understanding of the contents, the architecture can be

separated into two services by dividing the problem of segmentation (shown

in §3.1) from the problem of the transmission and distribution (shown in

§3.2).

3.1 Segmentation flow

The segmentation of suspicious lesions in DCE-MRI is the core of the CAD

system. Working on volumes and multidimensional arrays, it was natural

to choose a vector computing environment as MATLAB achieving a conse-

quent optimization in time and flexibility by application of mathematical,

morphological and array-level operations.

Starting from the concepts discussed in Chapter 2, it was designed a com-

plete operation flow to achieve a segmentation of the volume through suc-

cessive refinements until to have a set of voxels to consider suspicious; so

the set of suspicious ROI to provide to the radiologist is obtained from the

closure of all the voxels that are considered suspicious in compact and dis-

joint volumes. Therefore, the CAD system implemented in MATLAB is a

Computer-Aided Detection system that implements all the steps (in fig. 2.1)

till the detection of neoplastic masses leaving to radiologist the last inter-

pretation of the aggressiveness of each lesion. Due to the configuration as

a “cascade of operations” chosen for the detection system, it is easy to add
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a next additional stage to achieve an automated diagnosis (object of future

research, see §5) to transform the system by adding the capabilities of a

CAD diagnosis tool.

3.1.1 Segmentation steps

In the proposed architecture, the general steps, provided by a CAD system,

are complemented and structured to make a better gradual segmentation

and basing choices made on well-validated criteria.

Figure 3.2: Proposed system flow

In the specific:

Volume Extraction: the first operation performed by the system is

to extrapolate the breast scanned volume from the DICOM file, storing

the whole information in a 4-dimensional Matlab matrix (128 pixels

x 256 pixels x 80 slices x 10 acquisitions). The files that constitute

the DICOM format occupy about 110 MB and they are collected in a

single Matlab variable that occupies only 27MB. The excellent memory

management justifies in part the choice of the computing environment.

BreastMask Extraction: the first approximation of the segmenta-

tion is performed dividing the breast parenchyma (whatever it is) from

the air that surrounds it and from the tissues of the pectoral muscle.

The aim is to simplify the next stages by reducing the computation

due to the large amount of voxels with a ratio of about 8:1. The voxels

that represent the volume of the breast, and then the only need by the

next step, decreased from about 3 million to approximately 350,000.

The result of this step is a binary mask that represents the only breast

voxel (Breast-Mask - BM);
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Preprocessing: this phase collect all the operations need to prepare

the volume to the next stages. In particular, an image registration over

the time instants is made in order to reduce noise effects introduced

by any voluntary and especially involuntary movements of the patient;

Preselection: a second approximation of the results is obtained by

evaluating voxel by voxel signal intensity and considering (in an indi-

rect way) the maximum value of absorption of the contrast medium.

This voxel-based technique provides a set of suspicious voxel and it is

often used for a segmentation of the first approximation;

Feature Extraction: this step is necessary to complete the classifica-

tion and it is only performed on the set of dynamic features selected at

the design stage. This reduced subset decreases the processing time of

the classification phase and the time need to feature extraction itself;

Classification: the most of the work involved the selection and op-

timization of the used classifier: a Support Vector Machine (SVM)

trained to work on dynamic features. The output of the classification

step is the union of all voxel labeled as suspect that represent suspect

ROIs that will be subject to advice of an expert radiologist.

The validation of the results was performed considering some changes in

some modules (specifically: preprocessing, preselection and classification

modules) and evaluating the final results of the algorithm considering it

as a closed box. The changes taken into consideration will be adequately

treated in all their details in the corresponding sections; the table 3.1 shows

for each module the changes taken into account.
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Preprocessing Preselection Classification

NoReg NoPres MLP

MEDx3 SiPres RF

MlReg SVM

Table 3.1: Changes in some modules of the segmentation flow

3.1.2 BreastMask Extraction

The problem of segmentation of the breast tissue faced in this phase, besides

reducing the number of voxels as load to the later stages, allows to obtain

a first approximation of the result by selecting the only voxels relative to

the breast tissue; other voxels, related to the background and other tissues

adjacent to the breast, are not of interest for this study and they present

problematic results and noise caused by the different physical nature of the

material (air or other organic tissue). In the table 3.2 we see that the breast,

identified by a BreastMask (a binary mask that label only the voxel bellow-

ing to the breast tissue), takes on about 12% of the volume of extracted data.
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Patient ID # BM Voxel % of volume

b2 127095 4,8%

b3 115648 4,4%

b4 460360 17,6%

b5 336288 12,8%

b6 374831 14,3%

b7 379723 14,5%

b8 401638 15,3%

b9 375400 14,3%

b10 115472 4,4%

b11 571868 21,8%

b12 311180 11,9%

b13 296293 11,3%

b14 231588 8,8%

b15 269521 10,3%

b16 235380 9,0%

b17 170448 6,5%

m1 229647 8,8%

m2 139038 5,3%

m3 222426 8,5%

m5 352572 13,4%

m7 281248 10,7%

m8 264958 10,1%

m9 458960 17,5%

m10 350253 13,4%

m11 541752 20,7%

m12 693395 26,5%

m13 364325 13,9%

m14 362404 13,8%

m15 297452 11,3%

m16 351252 13,4%

m17 370548 14,1%

m18 168715 6,4%

m19 630574 24,1%

m20 312787 11,9%

m21 140557 5,4%

average 323017 12,3%

Table 3.2: Percentage of the breastmask
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In literature, several BreastMask segmentation algorithms have been pro-

posed [78, 79], some of them [80, 81] based on Otsu thresholding [82]. The

procedure of breast-mask extraction method applied in this flow, it is based

on already done work [83] and it is divided into three main steps:

• Preprocessing (fig. 3.3),

• Otsu thresholding (fig. 3.4),

• Morphological Refinements (fig. 3.5).

The starting volume is the 3D data obtained as the minimum signal intensity

(SImin), along time, of the original 4D volume value. The pre-processing

step uses min-max normalization in order to avoid sub-segmentation in slices

that have small range of values. As last step, in order to smooth mask bor-

ders and fill internal holes, a cascade of morphological operators is applied

in this order: “Closing” and “Holes filling” applied on global volume; “Ero-

sion” applied slice by slice in coronal view direction; “Dilatation” applied

on the global volume.

Figure 3.3: A slice of a DCE-MRI
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Figure 3.4: A slice of DCE-MRI after Otsu thresholding

Figure 3.5: A slice of a Breast Mask of DCE-MRI

3.1.3 Preprocessing (Image Registration)

The DCE-MRI is a scan that has a duration of several minutes (about 40

minutes) and therefore it is affected by so-called motion artifacts that are

ghost images due to accidental disturbances occur during scanning:

• Cardiac Pulsation

• Anatomical structures in constant motion (heart, lungs, blood vessel

walls, throat, eyes)

• Breath

• Other involuntary movements
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Figure 3.6: Brain DCE-MRI showing some motion artifacts

In the case of breast DCE-MRI motion artifacts are limited to the soft

component of the breast tissue itself. In compensation the supine position

on special brest-coils (which also improve the detail obtained from normal

detection coils - fig. 3.7) restricts the movements of the patient, reducing

the motion artifacts.

Figure 3.7: A model of breast-coil used in DCE-MRI

In any case, since the deductions made in the later stages are based on the

dynamic component of each voxel it is necessary that these movements are

eliminated or, at most, attenuated. Without a correct registration, the TIC

curve constructed into a precise spatial coordinate of the volume may refer

to different voxel and show a lack of correlation due to the displacement of

the tissues.
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There are several approaches to the recording of images. In the first approx-

imation it is possible to consider the effect of movements of the patient as

an additive noise and then it is possible to apply a median filter to reduce

such noise, this filter introduces a loss of information due to the weighing.

More advanced techniques, as already mentioned in section 2, provide mor-

phological transformations obtained by successive refinements.

The effects of registration can be estimated with appropriate similarity mea-

sures such as:

Table 3.3: Statistical indexes for evaluating the performance of registration systems
[66]

We compared different techniques of image registration:

NoReg: no image registration made;

MEDx3: median filter applied slice by slice on a window of 3 pixels

x 3 pixels;

MLReg: rigid registration obtained by the image processing toolkit

of Matlab 2012a [84]

RUReg: non-rigid registration (elastic) obtained by applying the

Rueckert algorithm [46]

Applying the image registration on ten patients and calculating average

indexes, we obtained preliminary results (tab 3.4) useful to choose the most

suitable technique to include in the architecture.
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Techniques Exec. Time (sec) R-MSE N-CC

NoReg - 0,08479 93,78%

MEDx3 6,235 0,09565 91,66%

MLReg 402,73 0,0803 94,56%

RUReg 11047,64 0,07679 95,16%

Table 3.4: Preliminary registration results

We can demonstrate the usefulness of this registration process and to assess

the quality of the results obtained by visually comparing the result of a

subtractive image (fig 3.8). If we display the trend of TIC in the proximity

of a lesion (in the red point) before (left of pic. 3.9 and after (right of pic.

3.9) the image recording, we can see that the registration fixes the TIC’s

points that now is similar to II sample curve shown in fig. 1.8.

Figure 3.8: Motion artifact on a breast subtractive image; in red a critical voxel
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Figure 3.9: Effect of a registration shown on a voxel tic

Although the numerical (Tab. 3.4) and visual results (fig. 3.10) of the

elastic registration are the best achievable with the instruments provided by

the scientific literature, the execution time (about 3 hours) of such approach

constitutes a blocking implementative limit and, to proceed to realization

of a CAD, we examined the only two approachable techniques. Surely it

is important to integrate the “non-rigid” registration technique and it is

currently interest of study (see §5).
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Figure 3.10: Visual result of elastic images registration

3.1.4 Preselection

Many segmentation works based their results on a simple thresholding car-

ried out voxel by voxel and obtained by evaluating in a direct or indirectly

way the values of the signal intensity [85, 86]. In order to get a better es-

timate of the value of absorption of the contrast medium, it is necessary

to evaluate the enhancement curve in terms of Relative Enhancement (RE)

that is the temporal evolution of the signal relatively to the value of signal

intensity of the voxel in the pre-contrast serie; in this way the curve still

models the absorption of the contrast agent along time, but it refers (in a

first approximation order) to mmol/kg.

RE(k) =
TICpost(k)−TICpre

TICpre
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Figure 3.11: Comparison of a Signal Intensity TIC (on the left) and a Relative
Enhanced TIC (on the right)

The results of a segmentation based on the cited work show [86] a very high

sensitivity in some cases very close to 100% [85]. A so high sensitivity is

indicative of a reduced fraction of false negatives and it is obtained by thresh-

olding a very low 30% [85] of enhancement of precontrast image. By contrast

we have an over-segmentation quite marked that makes the results an excel-

lent first level approximation if compared to a precise segmentation of the

lesions. We decide to use the technique with a more conservative thresh-

olding on enanchement, about 30% [85] (fig. 3.13) applying the simplest

version of the proposed method, that is to evaluate only the thresholding

and ignore all the conditions for suspiciousness added from the work; this

last precaution allows to achieve a sensitivity of 100% in both the proposed

methods (fig. 3.12 and 3.13)
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Figure 3.12: Preselection obtained by implementing part of [86]

Figure 3.13: Preselection obtained by implementing part of [85]

Looking at the above images we see that the tumor indicated by the gold-

standard is always in the preselection mask. We can also see the added value

obtained through the pre-selection step by comparing the average over the

time of the TIC curves contained in some specific regions (fig. 3.14).
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Figure 3.14: Result of preselection (in green), manual segmented roi (in red) and
all other voxel of BreastMask (in green) overlapped on a MRI

Figure 3.15: Some average tics in different regions: manual segmented, preselected
and whole breastmask (shown in fig. 3.14)

In the graph 3.15 we have represented the mean value and the standard

deviation of the following curves:

• In red the curves contained in the ROI manually segmented by the

doctor and that, therefore, represent our gold-standard;

• In yellow the curves preselected using the designed module;

• In green the rest of the curves contained in breastmask.

It is interesting to note that the curves of the ROI manually segmented by the

doctor, as well as the preselected curves, show a high variance and thus they
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could lead to an overlap. If we try to train a classifier to distinguish between

the red lines and the green lines, it is very probable that the selected features,

in a feature reduction, and the training would produce a binary classification

very close (in the results) to a segmentation with thresholding dispersing the

discriminant power of the classifier. Essentially the preselection step reduces

the field of action of the classifier to a much more complex problem, which

is to distinguish the curves in red from those in yellow.

3.1.5 Dynamics Feature in DCE-MRI

The proposed system uses a set of model-free features that describe the

problem by analyzing the dynamic evolution with some direct measurements

on the enhancement curve (fig. 3.16).

Figure 3.16: Some dynamics feature on a TIC

The next table contains all the feature considered in the problem of detection

and\or diagnosis of breast cancer.

53



Feature Description Formula 

AUC Measuring the area under the intensity 

curve ∫   ( )  
  

 

 

AUCTTP Measuring the area under the intensity up 

to the time of peak intensity 

 

CEI Contrast enhancement image - Measuring 

the maximum absorption of the contrast 

agent during the first minutes of 

acquisition τ (τ=2-3 min) 

   
      

(  (  )      ) 

CT Curve Type - Describes the kind of curve Persistent (I); Plateau (II); 

Washout (III) 

   (  )

   
 

Derivative of signal intensity   (    )    (  )

       
 

 (  ) Measuring the Enhancement of the signal 

intensity 
  (  )     

      Enhancement Slope Variance - 

Measuring the contrast agent activity     (
 (  )

       
)            

     Enhancement Standard Deviation     

MITR Maximum Intensity Time Ratio - 

Measuring the temporal behaviour of the 

changes in signal intensity 

    
         

 

APR-MITR Adjacent-Peripheral Region - Measuring 

the ratio between the MITR of different 

sections of a lesion (central, middle, and 

adjacent peripheral) 

    (        )

    (          )
 

 

PCR-MITR Peripheral -Central Region - Measuring 

the ratio between the MITR of different 

sections of a lesion (central, middle, and 

adjacent peripheral) 

    (          )

    (       )
 

 

NMITR Measure the temporal behavior of the 

changes in signal intensity 

     
         

 

POE Pattern of enhancement - Describes the 

kind of enhancement 

No enhancement; Centrifugal; 

Centripetal; Heterogeneous; 

Homogeneous; Ring  like; 

Ductal; Flat shape; Rim 

PI Perfusion index  - Summarized in a single 

index the temporal trend of the whole 

curve 

     
           

 ∑  (  ) (  )

 

   

 ∑   (  )(  (  )    (  ))

 

   

 

PSC Post initial signal course  - Evaluate the 

type of curve ICT according to the value 

obtained defines three types of curves: 

rising (increase>10%); plateau (between -

10% and +10%), washout 

(decrease>10%) 

  (  )      
   {     }

  (  )

   
   {     }

  (  )
 

                  

 



Feature Description Formula 

   

RC(  ) Rate of change - Measuring the change in 

signal intensity between consecutive 

instants 

  (  )     (    )

  (    )
 

      Rate of change at the maximum point    
 
   ( ) 

RE(  ) Relative enhancement  (  )

  
 

      Relative enhancement at the maximum 

point 
   
 
   ( ) 

N-RE(  ) Relative enhancement normalized   (  )     (  )

   (  )
 

RES(     ) Relative enhancement slope   (  )    (  )

      
 

RSI(  ) Relative signal intensity   (  )

  
 

       Relative signal intensity at the maximum 

point  
   
 
    ( ) 

      (     ) Relative signal intensity decrease   (  )    (  )

  (  )
 

         (  ) Relative signal intensity decrease from 

the peak 

        (  )

     
 

SER(  ) Signal enhancement ratio  (  )

 (  )
 

BS Signal intensity at baseline - Measuring 

the signal intensity before dosing of the 

contrast agent; in the case multiple 

precontrast measurements it makes the 

average 

SI(t0) 

SIR(  ) Signal intensity with R normalization   

  (  )
 

SIΦ(  ) Signal intensity with φ normalization 

 
 

 
     (

  (       (  ))

         
) 

SOD Sum Of local Differences  - Measure the 

separation from the background     ∑|  (  )    (    )|

 

   

 

TTP Time to peak - l'istante di tempo al quale 

corrisponde il massimo segnale 
            

WIS Wash-In Slope - Measure the slope in the 

area of absorption (by the dosing of the 

contrast agent to the point of maximum) 

     
   

 

WOS Wash-Out Slope - Measure the slope in 

the area of washout (from the point of 

maximum until the end of measurement) 

        (  )

(      )
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In order to reduce the overfitting and shorten training time is necessary to

extract a subset of the features listed above. For the choice of this subset

we relied on some experienced radiologists advice who recommended as five

main features that appear to be the most descriptive of the problem to be

segmented:

Area under TIC (AUC): total amount of contrast agent absorbed;

Relative Enhancement at Maximum Point (ReMax): contrast

agent peak;

Time To Peak (TTP): the time in which ReMax is gained;

Wash-In Slope (WIS): angular coefficient of linearized approxima-

tion of TIC curve from time 0 to TTP;

Wash-Out Slope (WOS): angular coefficient of linearized approxi-

mation of TIC curve from time TPP to last time.

3.1.6 Training and Classification

In this section we enumerate the used classifiers and we describe the training

techniques and the results validation methods used.

Specifically the following classifiers are used:

• Multilayer perceptron (MLP) methods of validation of results

• Random Forest (RF)

• Support vector machines (SVM)

All classifiers are trained considering the subset of the dynamic features con-

sisting of the five feature (shown in fig 3.16) described in the previous section.
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The training phase, being at the end of the whole process, was used for the

tuning of the full flow by varying all possible combinations in the modules;

All the combinations taken into account are in the table 3.1 and include the

possibility of varying three options of image registration, the absence or the

presence of the pre-selection step and three different classifiers for a total of

18 possible combinations.

Using a cross-validation technique such as leave-one-patient-out in order to

ensure a good statistical independence of the results obtained, we were able

to test every single combination getting for each one of them statistical

indicators of complete segmentation system.

3.2 Distributed architecture

The service distribution architecture is designed to meet the need to provide

the developed protocol, designed in the previous section (§3.1), in an oper-

ational and practical way and especially it manages privacy and security;

then the system requirements are the follows:

• Ensure privacy of radiologists;

• Ensure privacy of patients;

• Be flexible to new protocols;

• Adhere to the current network standards;

• Be independent to the operating system;

• Have an user-friendly GUI;

• Must be quite fast (to be used in a clinical environment) and let the

end user to continue his work (even on different patients) during server

side operation.
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Then the architecture is a client-server system developed in Java (called

jSecureSync), that allows secure synchronization between multiple clients

and a server meeting the requirements imposed.

Usually, to ensure part of the requirements, we can use Access Control

techniques such as:

• Confidentiality

• Authentication

• Authorization

3.2.1 Confidentiality

In information security, confidentiality refers to preventing the disclosure of

information to unauthorized individuals or systems. That protection must

be realized regardless of the security of the communication system used: in-

deed it assumes particular interest if the problem of ensuring the confiden-

tiality of communication is used when the system is inherently insecure (such

as the Internet). In particular we chose Transport Layer Security (TLS) and

its predecessor, Secure Sockets Layer (SSL), that are cryptographic proto-

cols designed to provide communication security over the Internet [87]. This

protocol use X.509 certificates (an ITU-T standard [88] for a public key in-

frastructure - PKI [89]) and hence asymmetric cryptography to assure the

counterparty whom they are talking with, and to exchange a symmetric key.

Then this symmetric session key is used to encrypt data flowing between the

parties.

To ensure the safety requirements we had to implement the version Client-

authenticated of TLS Handshake Protocol (basic and most common imple-

mentation provides only authentication of the server side - eg. HTTPS)
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Figure 3.17: A complete TLS\SSL channel handshake

Certificates, that are generated at users registration time, adhere to the

X.509 standard and they are issued with a 3072bit RSA Key Pair, according

to the 2012 NIST recommendations [90].

TLS\SSL permits the secure channel setup, agreeing by both parties, based

on the following parameters:

• a shared session key agreement based on the Elliptic curve Diffie-

Hellman (ECDH) [91, 92] algorithm;

• a Cipher-Block Chaining (CBC) is adopeted;

• data is encrypted with a 128bit shared key AES algorithm (RFC 3268

[90, 93]).

These settings result, in agreement with the NIST nomenclature, in an in-

ternal protocol configuration string: “TLS ECDHE RSA WITH AES 128

CBC SHA” (RFC 4492 [94]).
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3.2.2 Authentication and Authorization

Access to the functionality of the system is carried out without adding a

new login level or particular authentication steps but using data collected

by the SSL session to obtain the certificate and verifying their validity.

This security requirement is achieved by using Java Authentication and

Authorization Service, or JAAS, the Java implementation of the standard

Pluggable Authentication Module (PAM) information security framework

[95].

JAAS provides and manages three main resources:

• a representation of identity (Principal) and a set of credentials (Sub-

ject);

• a login service that will invoke the application callbacks to ask the

user things like username and password. It returns a new Subject;

• a service that tests if a Subject was granted a permission by an ad-

ministrator.

To obtain a login module that responds to the authentication of users it is

required to implement the javax.security.auth.spi.LoginModule interface.
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Figure 3.18: JAAS: the Java implementation of the standard Pluggable Authenti-
cation Module (PAM)

The LoginContext (javax.security.auth.login.LoginContext) is the core of the

JAAS framework which kicks off the authentication process by creating a

Subject. As the authentication process proceeds, the subject is populated

with various principals and credentials for further processing; in particular

it will need to apply and test the authorization policies, that will be created

to handle each user requests.

3.2.3 OsiriX Plug-in

In OsiriX we developed a plugin that displays and manages the requests

made to the server (fig. 3.19). The plugin was been written in Objective-C

using the Cocoa framework.
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Figure 3.19: OsriX plugin GUI

For each job required the plugin shows the punctual status, the estimate

remaining time and the size transferred on the network channel; when a

job is completed the user can request the results and gather the segmented

ROIs. Some GUI functionality is left for further research purpose.

3.2.4 Protocol

Clients and server communicate over the TLS\SSL channel through a very

simple (and with low overhead) protocol (fig. 3.20, whose commands are:

• [C → S] HELO: client has to open a synchronization process with the

server

• [S → C] OK v1.0: the server acknowledges and, at the same time, it

informs the client about the protocol version

• [C → S] C SND RQ: the client requests to synchronize a file

• [S → C] S SND ACK: the server allows the client to send over the

channel

• [S → C] S SND RQ: the server requests to synchronize a file

• [C → S] C SND ACK: the client allows the server to send over the

channel
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Figure 3.20: Internal protocol time diagram

3.2.5 Compression

In order to reduce the transmission overhead, JSecureSync always performs

a lossless compression before starting a transmission. We use Zip4j [96] a

java open-source library to handle Zip files that offers the following features:

• supports Zip format with 10 compression level [0-9];

• create, Add, Extract, Update, Remove files from a Zip file;

• read/Write password protected Zip files;

• supports AES 128/256 Encryption;

• supports Standard Zip Encryption;

• supports Zip64 format;

• supports Store (No Compression) and Deflate compression method;

• create or extract files from Split Zip files (Ex: z01, z02,...zip);
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• supports Unicode file names;

• progress Monitor.

DICOM files take up about 110MB and maintain the information without

providing a built-compression, but relying on external standards such as

JPEG2000 and others. We decide to implement compression looking for a

trade-off between the best compression factor and the additional time used

in the compression. In table 3.5 we highlight the standard compression lev-

els, the compression ratio and finally we compare them to the transmission

time of the packet (over a LAN 10/100 Mbps network); all data are obtained

on an average of 10 patients.

Due to the relevant correlation of medical images data, the best results are

obtained by using the fastest compression (level 1). Beyond this level a

better compression is not achieved but the time taken to reach it increases

significantly.

Compr. Original Compr. Compr. Compr. Trasm.

Level Size Size Ratio Time Time

0 (Store) 111 MB 111 MB 0.00% 0.75 s 12.38 s

1 (Fastest) 111 MB 34 MB 69.36% 3.47 s 3.82 s

3 (Fast) 111 MB 34 MB 69.36% 3.55 s 3,76 s

5 (Normal) 111 MB 32 MB 70.85% 16.88 s 3.68 s

7 (Maximun) 111 MB 31 MB 71.66% 45.54 s 3.61

9 (Ultra) 111 MB 31 MB 72.12% 116.96 s 3.50 s

Table 3.5: Analysis of the compression phase. Times are averaged over ten patients.
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Results

In this chapter the performances of the architecture are evaluated, both in a

global view and analyzing in detail the experimental results of the neoplastic

lesions segmentation subsystem.

4.1 Materials

All patients underwent imaging with a 1.5T scanner (Magnetom Symphony,

Siemens Medical System, Erlangen, Germany) equipped with breast coils.

DCE T1-weighted FLASH 3D coronal images were acquired (TR/TE: 9,8/4,76

ms; flip angle: 25 degrees; field of view 370x185 mm2; matrix: 256x128 px2;

thickness: 2 mm; PixelSpaceing:1,4453 mm; gap: 0; acquisition time: 56s;

80 slices spanning entire breast volume). One series (t0) was acquired before

and 9 series (t1 t9) after intravenous injection of 0.1 mmol/kg of a positive

paramagnetic contrast agent (Gd-DOTA, Dotarem, Guerbet, Roissy CdG

Cedex, France). An automatic injection system was used (Spectris Solaris

EP MR, MEDRAD, Inc.,Indianola, PA) and injection flow rate was set to 2

ml/s followed by a flush of 10 ml saline solution at the same rate.

The dataset is constituted of 35 women breast DCE-MRI 4D data, (av-

erage age 40 years, in range 16-69) with benign or malignant lesions, all

histopathologically proven: 16 lesions were benign and 19 were malignant
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(tab. 4.1).

ID Age Side Diagnosed (histopathologically proven)

b2 36 Right Benign neoplastic lesion

b3 40 Left Benign neoplastic lesion

b4 36 Right Benign neoplastic lesion

b5 32 Left Benign neoplastic lesion

b6 69 Right Benign fibroadenoma

b7 47 Left Benign fibrocystic dysplasia

b8 22 Left Benign fibroadenoma

b9 34 Right Adenosis associated to benign hyperplasia fibroadenomatosa

b10 32 Right Benign fibrocystic dysplasia

b11 39 Left Benign fibroadenoma

b12 42 Right Benign fibrocystic dysplasia

b13 16 Right Benign fibroadenoma

b14 26 Both Benign neoplastic lesion (two)

b15 38 Right Benign fibroadenoma

b16 38 Left Benign fibroadenoma (two)

b17 26 Right Benign neoplastic lesion (two)

m1 35 Left Malignant neoplastic lesion (two)

m2 45 Left Malignant neoplastic lesion

m3 46 Left Malignant neoplastic lesion

m5 40 Right Malignant neoplastic lesion

m7 45 Left Infiltrating ductal carcinoma of intermediate grade

m8 40 Right Infiltrating ductal carcinoma

m9 42 Both Infiltrating ductal carcinoma

m10 45 Left Malignant neoplastic lesion

m11 52 Left Infiltrating lobular carcinoma

m12 53 Left Ductal carcinoma in situ

m13 41 Right Infiltrating ductal carcinoma

m14 38 Left Infiltrating ductal carcinoma

m15 41 Right Infiltrating ductal carcinoma

m16 45 Right Infiltrating ductal carcinoma

m17 53 Left Dysplasia associated with ductal carcinoma in situ

m18 44 Right Infiltrating ductal carcinoma

m19 29 Left Infiltrating ducttal-lobular carcinoma

m20 44 Right Ductal carcinoma in situ (two)

m21 27 Right Malignant neoplastic lesion

Table 4.1: Patients DB.
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4.2 Performance evaluation: Segmentation

In this section we show the performance of the only segmentation subsystem,

using statistical indicators already defined in the table 2.3. The table 4.2

reports the results of the evaluation study by varying the pre-processing

method, with and without pre-selection phase, and by varying the classifier

(tab. 3.1). For each combination the table reports the mean value (evaluated

on a leave-one-patient-out basis) of sensitivity, specificity and accuracy, in

decreasing order of accuracy.

PreProc. PreSel. Classifier Accuracy Sensitivity Specificity

Median Yes SVM 98.70% 71.56% 98.94%

Median Yes RF 98.65% 67.78% 98.95%

Median Yes MLP 98.63% 72.82% 98.85%

Rigid Reg. Yes SVM 98.57% 67.13% 98.85%

Rigid Reg. Yes MLP 98.48% 68.79% 98.74%

Rigid Reg. Yes RF 98.40% 64.19% 98.70%

None Yes SVM 98.39% 69.82% 98.66%

None Yes RF 98.31% 65.92% 98.62%

None Yes MLP 97.87% 72.61% 98.13%

Median No RF 95.07% 90.81% 95.10%

Median No SVM 94.75% 92.74% 94.75%

Rigid Reg. No RF 94.28% 90.19% 94.30%

None No RF 94.19% 90.74% 94.21%

Rigid Reg. No SVM 94.00% 91.20% 94.00%

Rigid Reg. No MLP 93.97% 92.18% 93.98%

None No MLP 93.75% 90.65% 93.76%

Median No MLP 93.73% 92.82% 93.71%

None No SVM 93.61% 91.08% 93.61%

Table 4.2: ROI detection performance.

These results suggest that our approach with a SVM classification can give

simultaneously a great accuracy and specificity, and a good value of sen-

sitivity. It is worth noting, by considering the accuracy, that the results

obtained by using the median registration outperform those obtainable with
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a rigid registration, which, in turn, are better with respect to those achieved

without registration. The obtained results also confirmed that the use of a

Relative-Enhancement-based voxel pre-selection gave always rise to better

results with respect to the case when no pre-selection is used. When pre-

selection was used, the SVM classifier performed consistently better than

MLP and RF (differences in accuracy are always statistically significant —

p < 0.05).

The intermediate results and the final ones are shown in the following figures;

the process has been applied to a malignant and benign tumor.

Figure 4.1: A benign lesion: a) Brest-mask; b) Manual ROI lesion segmentation
(red perimeter); c) Pre-selection mask (green area); d) automatic detected ROI
(yellow area)
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Figure 4.2: A malignant lesion: a) Brest-mask; b) Manual ROI lesion segmentation
(red perimeter); c) Pre-selection mask (green area); d) automatic detected ROI
(yellow area)

In order to further validate the results obtained, we have implemented some

works currently available in the literature:

Fusco et al. (MLP based) [97]: Implements, among other tech-

niques facing in the paper, an approach based on dynamic features

and MLP classifier;

Fusco et al. (Pixel-Based) [85]: Implements a pixel-based tech-

nique that applies a binary Thresholding on some dynamic features

such as the maximum relative enhancement (ReMax) and the instant

of time when the peak occurs (Time To Peak - TTP);

Torricelli et al. (Pixel-Based) [86]: It also implements a pixel-

based technique as the previous one but with different choices of fea-

ture and Thresholding. It is developed for segmentation of Colon/Rectum

Cancer.

Table 4.3 reports our best result (from tab. 4.2) compared with other

methodologies. It is evident that our method demonstrates the best ac-

curacy, with a sensitivity which is significantly higher than the second best.
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As regards the other two approaches, the difference among their accuracies

and the one obtained by our approach is statistically significant (p < 0.05).

Methodology Accuracy Sensitivity Specificity

Proposed Methodology 98.70% 71.56% 98.94%

Torricelli et al. [86] 98.69% 25.80% 99.49%

Fusco et al. [85] 86.99% 90.97% 86.99%

Pixel-Based on RE [97] 86.59% 75.44% 86.64%

Table 4.3: Performance comparison of the proposed method with other approaches.

In order to better show our results, figures 4.3 and 4.4 compare the automatic

segmented region obtained for a benign and a malignant lesion, respectively,

by using the approaches reported in table 4.3. In this case the advantage of

using our approach appears even more evident.

Figure 4.3: Comparing results for a benign lesion: a) our proposed approach; b)
the pixel-based approach proposed by Torricelli et al; c) the MLP-based approach
proposed by Fusco et al; d) the Pixel-Based on RE proposed by Fusco et al.
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Figure 4.4: Comparing results for a malignant lesion: a) our proposed approach; b)
the pixel-based approach proposed by Torricelli et al; c) the MLP-based approach
proposed by Fusco et al.; d) the Pixel-Based on RE proposed by Fusco et al. Note
that in this case b) was not able to detect the lesion.

4.3 Performance evaluation: Architecture

To prove the validity of the client-server model we compare the execution

time required to perform the entire operation into two distinct conditions:

the first condition (tab. 4.4 on the right) requires that the segmentation is

performed totally on a typical OsiriX workstation (Apple iMac with Intel

Core 2 Duo 2.0 GHz with 3GB RAM) and the second one (tab. 4.4 on the

left) shows the performance improvement which is obtained in the developed

client-server architecture using the speed-up achieved on a server dedicated

to the segmentation of neoplastic lesions (2x Quad Core Xeon 3.0Ghz 32GB

RAM).
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Remote Local

ID C → S
Segment.

S → C
Total Trasm. Segment.

time (s) time (s) time (s) time (s)

b2 29.73 134.94 1.24 165.91 18.67% 1142.13

b3 28.34 158.48 2.04 188.85 16.09% 1322.21

b4 30.14 149.36 1.80 181.30 17.62% 1211.98

b5 30.27 115.48 1.55 147.30 21.60% 998.30

p5 31.32 148.99 1.65 181.96 18.11% 1223.94

m1 28.84 147.32 1.35 177.50 17.00% 1523.54

m2 29.71 152.82 1.81 184.35 17.10% 1342.35

m3 30.12 121.63 1.23 152.98 20.49% 1083.15

m5 30.42 143.27 1.72 175.42 18.32% 1263.65

m7 28.73 168.47 1.93 199.14 15.39% 1526.23

Avg. 29.76 144.08 1.63 175.47 17.89% 1263.74

Table 4.4: Performance comparation of remote computing time (including Client
to Server transmission, image segmentation on the Server and Server to Client
transmission) versus local computing time over ten patients.

It is also important to note that the overhead added by the distributed

architecture is just 18% of the total processing time.
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5
Conclusion and future works

The results shown demonstrate the validity and quality of an automatic

detection tool as the one developed in this thesis. As many times pointed

out the ultimate goal is not to replace the radiologist in the difficult task

of identifying or diagnosing neoplastic diseases, but to simplify the difficult

flow that leads to a good diagnosis by providing tools as reliable as possible.

As first step, taken at the end of this long work, we presented the results,

just discussed in this thesis, to the scientific community by publishing it

[98, 99].

The road to a complete, reliable and medically valid tool through some

improvements that cannot be ignored; The whole segmentation system offers

several margins improvements including:

• a better implementation of the brestmask extraction module in order

to improve the segmentation of the breast tissue;

• the integration of other feature than dynamics one. Of special interest

are the pharmacokinetic feature that deduce some physiological pa-

rameters of the examined tissue basing on the kinetics of the contrast

medium measured in DCE-MRI. These features represent a new direc-

tion in segmentation and classification of neoplastic tissues in general;
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• a better Implementation of elastic image registration.

Other interesting ideas for future developments mainly concern to consider

different acquisition protocols, ensuring that the segmentation techniques

support at least the most common protocols. At last, before to release

the service to end users, especially in a so sensitive sector as the medical

environment, it is necessary to deep in a critical manner the problem of the

dependability; this aspect is essential to ensure meaning of “trust” about the

system and especially about the results. This list of possible improvements

does not represent a reminder but it is a detailed list of activities which today

are the object of study of the working group in which has been developed

this thesis.
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